
Powered by Elektor

GigaDevice added a new family of microcontrollers back in 2019.
An important intention by GigaDevice in the design criteria was
to promote a pain-free transition from other microcontroller
architectures — the programming paradigms of the HAL are
similar to those found for the GD32F devices. The current state
of this family of devices is shown in Figure 1.
The RISC-V specification defines a standard ISA (Instruction
Set Architecture), not an implementation for a specific MCU.
The handling of exceptions, interrupts, peripherals and other
niceties are left to the microcontroller developer’s ingenuity.
In the case of the GD32VF, GigaDevice decided to comply with
the design specifications set by ARM designs.
Even if this does not lead to 1:1 code transferability (see
[ARM2]), the learning curve is not quite so steep for those with
some previous background experience. For this reason alone,
we recommend taking a serious look at the system.

Setting up the tools
GigaDevice offers developers a very comfortable IDE — the
command line level manipulation required by other provid-

ers is not necessary here. A small trap is waiting at this point
though. You may be tempted to go to https://www.nucleisys.
com/download.php and download the following packages
individually:
• OpenOCD 64
• RISC-V Win32
• Nuclei Studio

At first glance this seems like a reasonable approach but in
practice you end up with mismatches between the toolchain
and IDE components. The correct version of the IDE and all
its associated components can all be found at:

www.nucleisys.com/upload/file/2019/10/Nucleistudio/NucleiStu-
dio_IDE_201909.rar

which also includes the toolchain. Extract the archive into the
folder:

C:\NucleiStudio_IDE_201909

GD32VF103 series of RISC-V MCU quick start

By Tam Hanna

GigaDevice Semiconductor Inc. has been producing the GD32F103 microcontroller for a number of years
now. It contains the popular Arm Cortex-M3 CPU but last year they threw their gauntlet into the embedded
microcontroller arena by introducing the GD32VF103 device (note the ‘V’ in the description) which has a
RISC-V CPU. We took a closer look at it.

Figure 1: The RISC-V family is quite extensive and fully compatible with existing GD32 MCUs in software
development and pin packaging. (Image source: GigaDevice)

Powered by Elektor

Messages in the display window indicate the system status.
The most important one at this stage of the setup is:

Info: JTAG tap: auto0.tap tap/device found:
0x790007a3 (mfg: 0x3d1 (GigaDevice Semiconductor
(Beijing)), part: 0x9000, ver: 0x7)

This indicates that the target device has been recognized and
confirms that the USB communication link is working correctly.
The code provided in the example is intended for use with the
full-function GigaDevice evaluation board — if you use the
small board only one LED is available to be turned on and off
on the board. Now it is possible gain better insight into the
API by right-clicking parts of the sample code and using the
reflection function available in Eclipse.

What’s what?
At this point, we open the main.c file and look at the entry
point of the RISC-V software. GigaDevice — unlike Arduino —
doesn’t have a framework library so execution starts with the
main function:

This is not required if using the GD-LINK debug probe which is
hard soldered on all Gigadevice development boards; if you don’t
have a supported version of Java, you will find one in the archive.
The author recommends you put the folders NucleiStudio and
SerialDebugging_Tool directly in a subdirectory of C.
Start the IDE by clicking

C:\NucleiStudio_IDE_201909\NucleiStudio\eclipsec.exe

Then click File New Project and choose the template C/C++ C
Project. The project intended for our MCU is named GigaDevice
RISC-V Project; names can be assigned more or less arbitrarily.
In the MCU selection we select the GD32VF103 device; the
remaining settings remain as shown in Figures 2 and 3.
Make sure to minimize the welcome window by double-clicking
its header. The next step is to click the hammer icon to start
the first compilation process.

Eclipse is everywhere
At this point we can begin by running the example program.
GigaDevice offer various evaluation boards to support their
devices. For the purposes of this product review I will use the
basic GD32VF103C-START board.
Connect the board to the workstation via the the GD-Link
port. No external debugger and/or programmer is required as
all our boards include the on-board GD-Link Debug Probe. If
software has never been installed on this board before, LED1
will light up. The GD32VF103C-START and the Nucleo devel-
opment boards from STM are quite similar. The GigaDevice
board includes two Mini USB cables and various pin header
strips which need to be soldered in place.
The small evaluation board is limited to the standard Arduino
header pinout assignments and does not use the Morpho
connector provided on the STM boards.
GigaDevice provides support in the same way Nuclei Studio
generates an execution template for the newly created
project skeleton - on the author’s workstation it is named
ElektorGigaTest1_Debug_OpenOCD. Note that the program
must not be executed using the normal tools included with
Eclipse.

Figure 2: NucleiStudio configures some peripherals by default. Figure 3: The default toolchain settings work here.

Figure 4: These controls replace the debug tools provided by Eclipse.

Powered by Elektor

the more basic starter board I am using here.
Also interesting is the delay_1ms() statement – it specifies
a timebase, independent of the processor clock so that code
written to run on a slower processor will not need to be changed
to maintain the same software timing delays. The delay required
is passed as a numeric parameter.
Constants like LED1 are defined in the file gd32vf103v_eval.h,
which is intended for the larger board. The three elements corre-
sponding to the GPIO port used with our board are as follows:

#define LED1_PIN GPIO_PIN_0
#define LED1_GPIO_PORT GPIOC
#define LED1_GPIO_CLK RCU_GPIOC

Let’s first look at gd_eval_led_init, which takes care of the
evaluation board initialization. Here we make sure the periph-
eral device is connected to the clock generator. This is followed
by gpio_init, where the attributes of the LED GPIO port are
assigned:

void gd_eval_led_init(led_typedef_enum lednum)
{
 /* enable the led clock */
 rcu_periph_clock_enable(GPIO_CLK[lednum]);
 /* configure led GPIO port */
 gpio_init(GPIO_PORT[lednum], GPIO_MODE_OUT_PP,
 GPIO_OSPEED_50MHZ, GPIO_PIN[lednum]);

The value GPIO_OSPEED_50MHZ ensures that the output pin
slew rate can support the output speed. For applications where
timing constraints are less critical a slower frequency can be
assigned to reduce the generation of switching RFI. The next
statement resets (clears) the pin to make sure the program
begins with the LED off:

 GPIO_BC(GPIO_PORT[lednum]) = GPIO_PIN[lednum];
}

The GPIO_BC macro gets us deeper into the framework.
Switching on and off the LEDs on the evaluation board is done
by the following two methods, which are basically limited to
un-wrapping the data arrays using the LED as an index:

void gd_eval_led_on(led_typedef_enum lednum) {
 GPIO_BOP(GPIO_PORT[lednum]) = GPIO_PIN[lednum];
}
void gd_eval_led_off(led_typedef_enum lednum) {
 GPIO_BC(GPIO_PORT[lednum]) = GPIO_PIN[lednum];
}

int main(void)
{
 gd_eval_led_init(LED1);
 gd_eval_led_init(LED2);
 . . .

 while(1){
 /* turn on led1, turn off led4 */
 gd_eval_led_on(LED1);
 gd_eval_led_off(LED4);
 delay_1ms(1000);
 . . .

In this fragment of the code we can see the first step, the 4
GPIO pins connected to LEDs are initialized and then switched
on and off in an infinite while loop with a 1 second delay inserted
each time two of the LEDs are switched. The larger evaluation
board is fitted with four LEDs, which is why the supplied code
example is larger than it needs to be for switching the LED on

Where is my CUBE?
The graphical code generator tool CubeMX used by Atollic
and Co is not currently supported by GigaDevice. It will
therefore be necessary for the developer to take care of
configuring all the peripheral devices.

Figure 5: The peripherals subfolder contains the HAL library source code.

Powered by Elektor

 while(1){
 GPIO_BOP(GPIOA) = GPIO_PIN_5;
 GPIO_BC(GPIOA) = GPIO_PIN_5;
 }
}

Here the GPIO port is initialized and then the pin is continually
set and reset in the while loop via the two registers mentioned
above.

Note this is an endless loop and you will need to click on the red
stop button symbol before attempting to re-run any new revision
of the test code. The output is toggling at high frequency so
it’s necessary to keep all connections to the signal pin as short
as possible and be aware of the scope probe capacitance. The
output waveform can be seen in Figure 6.

Arm wrestle RISC-V
Open-source and royalty-free architectures such as RISC-V
promise to bring a breath of fresh air to the microprocessor
marketplace currently heavily dominated by Arm devices. This
is good news for product developers and start ups that often
don’t have pockets deep enough to fund licensing fees neces-
sary to build Arm-cored system-on-chip (SoC) designs.

Thanks to its similarity to existing layouts the GigaDevice
RISC-V range of processors is a good start if you are keen to
get some hands-on experience with the technology. From a
software developer’s point of view, the HALs are so similar that
little effort is involved in changing to them.

The bottom line
Given all the advantages of the RISC-V controller it will no
doubt be interesting to explore the capabilities of this device
in an embedded environment. Whether it’s just to satisfy your
own curiosity or for more commercial reasons the devices from
GigaDevice provide a good introduction to the technology.
 An interesting development for the maker community is the
recent appearance from Longan of their Nano board; it is of
similar size to the STM Blue Pill development board but uses
a GD32VF103CBT6 32-bit RISC-V humming along at 108 MHz
while sipping just one third the power of an Arm Cortex-M3
core. All this for less than $5 (including a 0.96” 160 x 80 IPS
RGB LCD). One thing’s for sure; at this price and performance
level, we can expect to see many more low-cost development
boards and applications based on the RISC-V architecture enter-
ing the marketplace quite soon.

200094-01

Their declaration can be found in the file gd32vf103_gpio.h.

The two register architecture known from other microcontrollers
(one for setting bits and one for resetting bits) is also used here:

#define GPIO_BOP(gpiox) REG32((gpiox) +

0x10U) /*!< GPIO port bit operation register */
#define GPIO_BC(gpiox) REG32((gpiox) +

0x14U) /*!< GPIO bit clear register */

If you want to learn more about the GPIO-API, right-click the
editor and select the header and source switch option in the
context menu. You will find yourself in gd32vf103_gpio.c, which
contains the full interaction methods and their implementations.
More information can be found by taking a look at the hardware
support library. As shown in Figure 5, their source code is
located in a subfolder of the project skeleton.

To test how fast the output pin can be toggled we can build an
endless loop in software. In order to reduce time spent making
subroutine calls the loop is made up of just the bit set and
reset instructions. The toggled pin (5) is initiated as a push-pull
output and the output speed (slew rate) set to 50 MHz mode:

int main(void)
{
 rcu_periph_clock_enable(RCU_GPIOA);
 gpio_init(GPIOA, GPIO_MODE_OUT_PP,
 GPIO_OSPEED_50MHZ, GPIO_PIN_5);
 GPIO_BC(GPIOA) = GPIO_PIN_5;

Figure 6: The RISC-V core is a real powerhouse.

Web Links

[1] GigaDevice Product Selection Guide:
www.gigadevice.com/wp-content/uploads/2019/06/GigaDevice-Product-Selection-Guide.pdf

[2] GigaDevice GD32 Development Tools: www.gigadevice.com/products/microcontrollers/gd32-development-tools/

