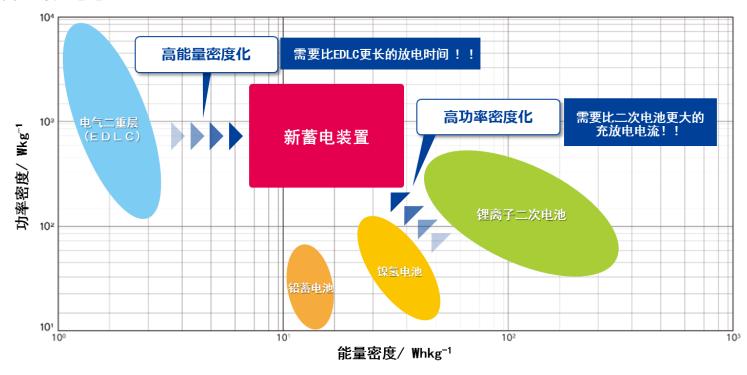
小型锂离子可充电电池

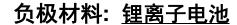

2019年9月

新产品:小型锂离子可充电电池

小型锂离子可充电电池

对于蓄电装置有大输出功率和大容量的要求。

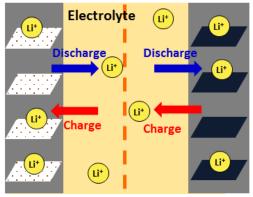
各种蓄电装置的差异


名称	小型锂离子可充电电池	电气双层电容器(EDLC)	锂离子电池
蓄电原理	ク极 化学反応 正极 e e e e e e e e e e e e e e e e e e	 	た电 に た に た に た に た に た に た に た に た に た に に た に に た に た に に た に に た に に た に に に た に に に に に た に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に
电圧	~2. 8V	~2. 7V	~4V
能量密度	~40Wh/kg 优于E	DLC ∼7Wh/kg	~300Wh/kg
功率密度	3kW/kg 优于F	扎 ~10kW/kg	∼1kW/kg
使用温度范围	_30 ~ +60 °C 优于	皀池 —40 ~ +85 ℃	−20 ~ +60 °C
Cycle寿命	25,000回 over 优于	扎池 100 万回~	~3,000回
放电	存在下限电圧	可放电至0V	存在下限电圧
安全性	无由热失控引起的发热·着火现象 优于	无由热失控引起的发热・着火现象 キン ル	有发生由热失控引起的发热・着火 的可能性
优点	高输出功率、长寿命、安全	七/5 高输出功率、长寿命、安全	能量密度高
缺点	能量密度低	能量密度低	寿命短

新蓄电装置在高rate充放电的情况下依然在长寿命和安全性方面具有优势。

[小型锂离子可充电电池]的特殊负极材料

"新蓄电装置"与传统"锂离子电池"的区别 → 负极材料


LiC₆

新蓄电装置

LTO

负极 正极

LTO 材料的优势

- ▶ 拥有很强的温度安定性,不会自燃。
- ▶ 和电解液的反应性低 → 由于反应产生的热量少
- ▶ 由于电子传导性低,过放电时极难发生热失控状况 (只会产生微量的电流和热量)

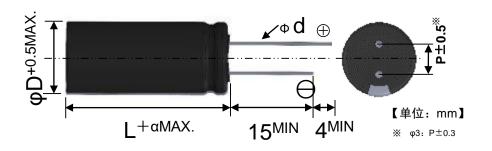
<u>高安全性和高信赖性</u>

小型锂离子可充电电池规格

■ 本产品特长 ・・・拥有高出力和長寿命的圆筒形小型锂离子可充电电池

小型锂离子可充电电池

产品规格	
额定电压	2.4V
最大充电电压 (连续充电时)	2.8V
放电终止电压 (连续充电时)	1.8V
使用温度范围	-30 ~ 60°C


尺寸 (引线型)	容量 (mAh)	重量 (g)	能量密度 (Wh/L)
Ф3×7L	0.35	0.1	17
Ф8×11.5L	14	1.5	58
Φ12.5×40L	150	9.2	73

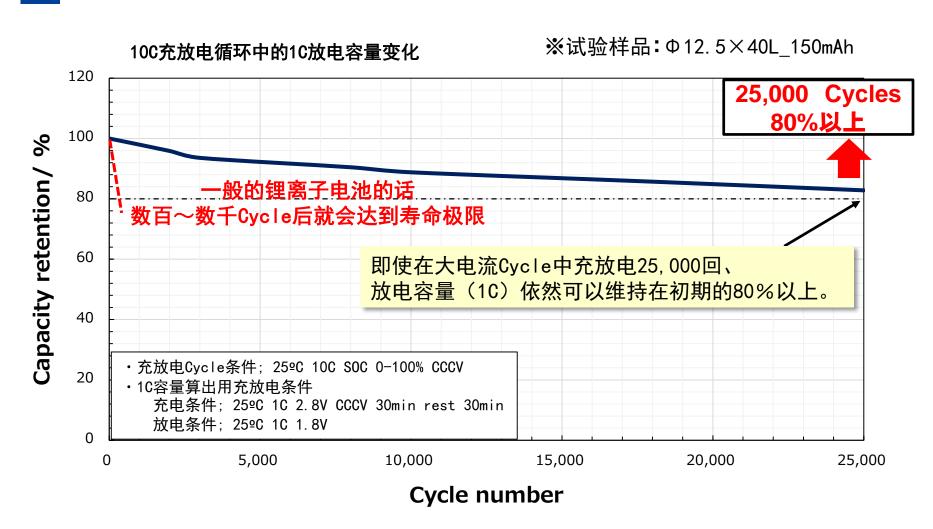
※φ4x25.5L(5mAh), φ8x20L(25mAh), φ10x31.5L(60mAh)尺寸商讨中。

※和EDLC比较的时候, 请使用1mAh ≒ 10F

■ 尺寸图

引线型

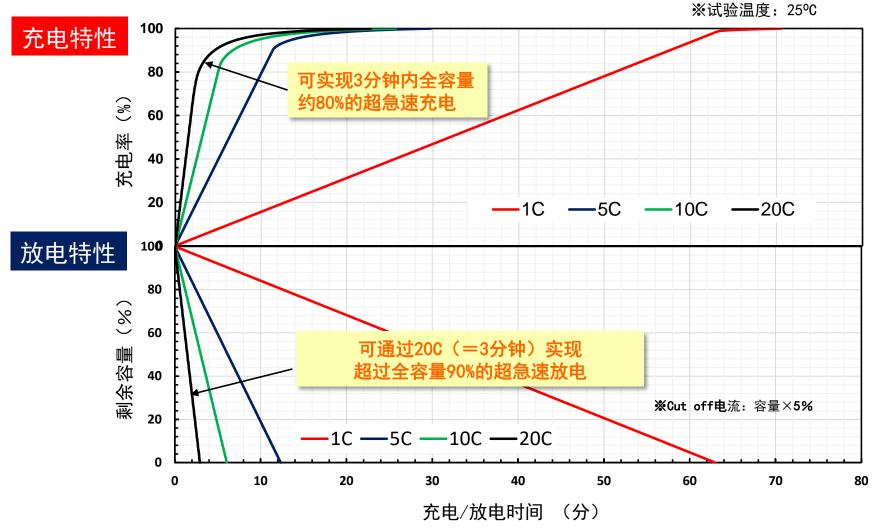
φ D	3	8	12.5
Р	1.0	3.5	5.0
φD	3	8	12.5
ϕ d	0.4	0.6	0.8
ϕ D	3	8	12.5
α	1	1.5	2.0


安全性

产品特长

长寿命 25,000回以上的循环寿命 2 急速充电 · 放电可能 大电流(最大20C)充放电可能 低温特性 寒冷环境(-30°C)也可使用

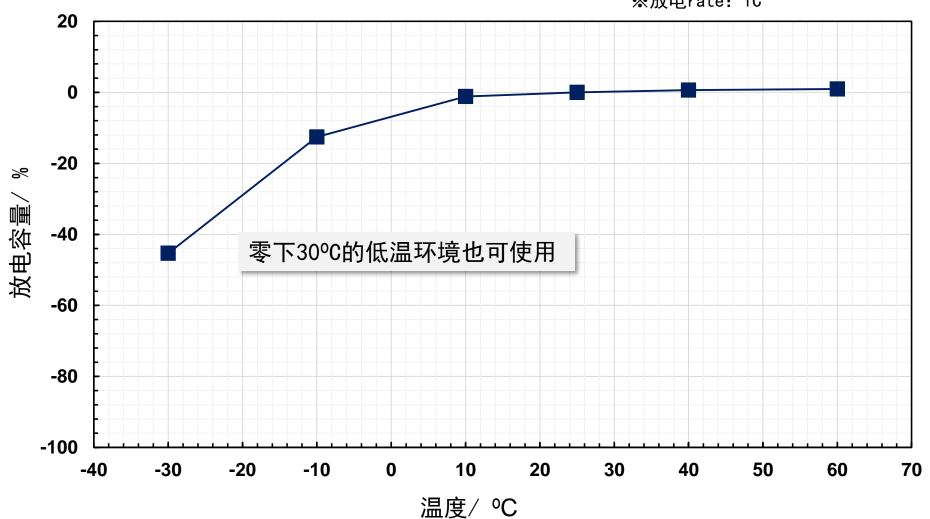
使用安全性高的LT0材料


1 長寿命: 充放电25,000 Cycle后依然能维持80%以上的容量

充放电特性

2 急速充电・放电可能 : EDLC同等的输入/出功率密度

※试验样本: Φ12.5×40L_150mAh



温度特性

3 低温性能 :寒冷地区(-30°C)也可以使用

※试验样本: Φ12.5×40L_150mAh

※放电rate: 10

安全性能

4 安全性:强制使内部短路时,发生破裂·着火的可能性低

No.	试验项目	判定基准	结果
1	压坏	无破裂· 着火现象	未发生 破裂·着火
2	钉扎	无破裂· 着火现象	未发生 破裂·着火
3	Blunt Nail 试验	无破裂· 着火现象	未发生 破裂·着火
4	外短	无破裂· 着火现象	未发生 破裂·着火
5	过充电	无破裂· 着火现象	未发生 破裂·着火
6	强制放电	无破裂· 着火现象	未发生 破裂·着火

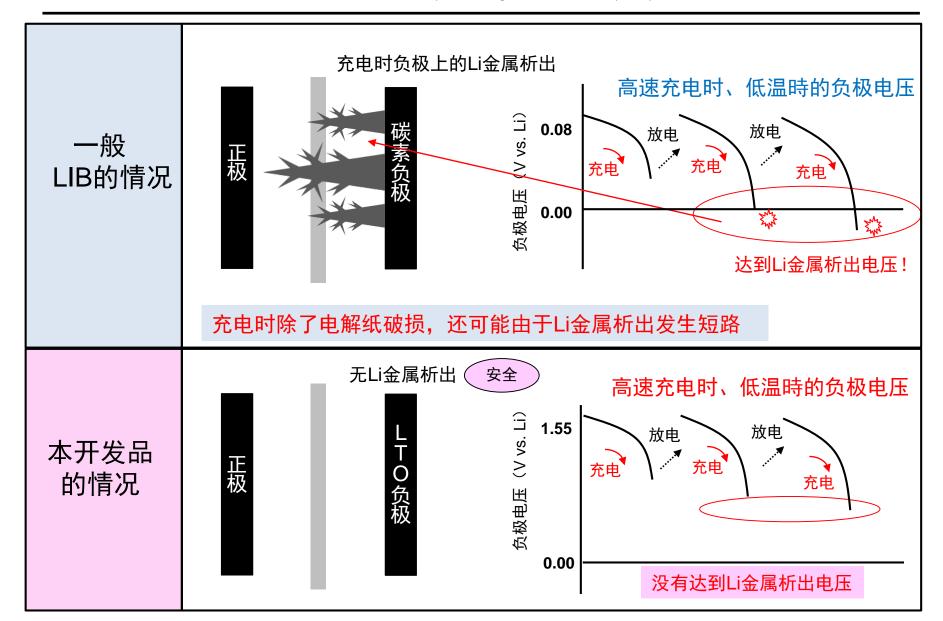
小型锂离子可充电电池

发生破裂·着火的可能性低,十分安全

安 3

压坏

钉刺



负极材料带来的安全特性

开发产品通过使用特殊负极材料(LTO)实现高安全性能。

材料・技术	本开发产品	以往锂离子电池
负极材料	LTO(使用不燃材料) →熱安定	碳素材料 (石墨)
内部短路电流	小 短路情况, LTO表面由于相变化阻抗变高, 只有微量电流通过	大
Li金属析出	无 高速充电时、 低温時、长期循环时 也不会达到Li析出电压	有 高速充电时、 低温时、长期循环时, 达到Li析出电压

Li金属析出与短路现象

小型锂离子可充电电池的目标市场

■小型锂离子可充电电池的目标市场

电子笔

无线耳机

行车记录仪

Michael Britania Balancia Bala

车载用辅助电源 (动力转向,门锁解除,紧急呼叫,ADAS等)

充电式玩具

电动工具

电子香烟

loT设备 (定点观测,状态监视)

穿戴式终端

智能电表

内存备份 (家电,工业机器等)

笔记本电脑 (CMOS备份)

遥控器

新蓄电装置的使用

○危险有害性

- 由于化学成分被密封在新蓄电装置中,危险性极低。
- 但是,如果使用不当,可能会导致新蓄电装置变形,泄漏,破裂, 产生热量或刺激性。腐蚀性气体,因此使用时请格外小心。

○稳定性和反応性

- 如果2个或2个以上个的产品未对端子进行绝缘处理,并杂乱混合的话, 则可能发生短路从而导致装置破裂·急剧发热。
- 在过度充电,加热或置入火中的情况下,电解液等可能会剧烈喷出。
- 如果对装置进行分解,则可能由于短路而迅速产生热量。

nichicon

新蓄电装置的使用注意事项

- ·请勿使装置短路 电池过热可能会导致液体泄漏,破裂,发热。
- ·请勿施加逆电压 内部可能发生异常反应,导致液体泄漏,破裂或过热。
- ·请勿施加物理负荷 如果强行施加外力,部件将损坏,导致感电,短路和液体泄漏。
- ·请勿进行下列测试 过充电测试,过放电测试,钉刺测试,压坏测试,跌落测试, 耐化学药品性测试,高温暴露测试。

电解液泄漏时的处理

电解液是易燃的,同时会伴有对眼睛,皮肤和粘膜的刺激。万一发生泄漏,请参阅以下信息。

- · 附着在皮肤上时 立即用水或温水冲洗以及肥皂冲洗附着部位。 如果您的皮肤有变化或持续疼痛,请立即咨询医生。
- · 飞溅入眼时 立即用水清洗约15分钟,并咨询医生。
- ·冒烟,着火时 请用碳酸气体,粉末灭火器或大量水灭火。

新蓄电装置的保管

○保管条件

- ·保管中请勿使端子间接触或使端子与导体接触。
- · 请避免在下列环境中保管。
- (a) 直接与水接触, 高温高湿, 以及会导致结露的环境。
- (b)直接与油接触或充满气体状油的环境。
- (c) 直接与盐水接触或充满盐分的环境。
- (d)充满有毒气体(硫化氢,亚硫酸,亚硝酸,氯,溴,甲基溴,氨等)的环境。
- (e) 受直射阳光, 臭氧, 紫外线和辐射照射的环境。
- (f) 使用酸性和碱性溶剂的环境。
- 关于长期保管性能,正在确认之中。

nichicon

SINCE1950