Basics of Permanent Magnet Motors and Field Oriented Control

Ondrej HOLY
Tomas DRESLER

$$
5
$$

Physics lecture

- Now we'll take a look at basic physics happening in the motor
- It's no rocket science and we will discuss only few equations describing, why the motor turns and what's the relation between the current, voltage, momentum, torque and speed
- No more than 10 slides!

What causes rotation \& speed? $(1 / 10)$ Our physical system

What causes rotation \& speed? $(2 / 10)$ Mechanics

- The stable torque equation: $\mathrm{T}_{\mathrm{M}}+\mathrm{T}_{\mathrm{T}}+\mathrm{T}_{\mathrm{I}}+\mathrm{T}_{\mathrm{NET}}=0$
- T_{M} is motor torque
- $\mathrm{T}_{\mathrm{T}, \text {, }}$ are mechanical system "resistances", non-linear

- $\mathrm{T}_{\mathrm{NET}}=\mathrm{J}(\omega) \frac{d \omega}{d t}$ is load torque, non-linear, J is inertia
- Thus

$$
\omega(\mathrm{t})=\int_{\tau_{0}}^{t} \frac{\tau_{N E T}(t)}{J(t)} d t+\omega_{0}
$$

What causes rotation \& speed? $(3 / 10)$ Mechanics - wrap up

Change of speed is equal to available torque:
$>$ Positive torque remains \rightarrow motor accelerates
$>$ Negative torque remains \rightarrow motor slows down and even reverses
$>$ The bigger the speed, the bigger losses and less torque \rightarrow acceleration is smaller, down to zero, where we reach maximum speed $\omega_{\text {MAX_MECH: }}$:

What causes rotation \& speed? $(4 / 10)$ Mechanics

- Dynamic torque equation (for reference):

$$
\begin{array}{ll}
J \frac{d \varphi^{2}}{d t^{2}} & +D \frac{d \varphi}{d t}+K \varphi= \pm \tau_{M} \mp \tau_{S H} \\
J & = \\
& \text { inertia } \\
\mathrm{D} & = \\
\mathrm{K} & \text { damping } \\
\tau_{M} & = \\
\text { spring constant } \\
\tau_{S H} & = \\
\varphi & \text { motor torque } \\
\varphi & = \\
\text { shaft instant passive torque } \\
& \text { shaft angle }
\end{array}
$$

What causes rotation \& speed? $(5 / 10)$ Mechanics

- Mechanical power on load

$$
P_{M E C H .}=\tau_{M} \omega-D_{M} \omega^{2}-\tau_{T} \omega
$$

$D_{M}=$ damping
$\tau_{M}=$ motor torque
$\tau_{T} \quad=\quad$ resistive torque
$\omega=$ mechanical speed

What causes rotation \& speed? $(6 / 9)$ Magnetics

- Lorentz law: $\vec{F}=I \vec{l} \times \vec{\Phi}_{M}, \mathrm{~F}=I l \Phi_{M} \sin \varphi$ [$N ; A, m, T]$
- $\tau_{M}=F \cdot r=I \Phi_{M} l r Z$ [Nm; N, m, -]
$>$ We control current I and phase φ
$>$ Biggest force (torque) is applied when φ is 90° (i.e. $\sin (\varphi)=1$)

What causes rotation \& speed? (7/9)

Electrics

- $U=L_{D, Q} \frac{d I}{d t}+R_{S} I+K_{e} \omega$
$\mathrm{U}=$ supply voltage
$K_{e} \omega=\mathrm{b}-\mathrm{emf}$ voltage
$K_{e}=\Phi_{M} r l Z=$ electric constant $R_{S} I$ - winding losses
$L_{D, Q} \frac{d I}{d t}$ - the useful part,
converted to the current and torque

What causes rotation \& speed? $(8 / 9)$ Electrics - wrap up

- Speed is proportional to the voltage
- Torque is proportional to the current
$>$ Torque constant [Nm / A] is proportional to electrical constant [V/krpm]

What causes rotation \& speed? (9/9) Electrics - b-emf voltage

- B-emf voltage is induced by rotor turning in the stator winding, with opposite direction of supply current
$>$ For constant supply voltage, the higher the speed, the lower current we can achieve and thus the lower the available torque

$$
\begin{gathered}
U=L_{D, Q} \frac{d I}{d t}+R_{S} I+K_{e} \omega, \text { or } \\
U=K \cdot \text { torque }+ \text { losses }+b_{-} e m f
\end{gathered}
$$

Effects of B-emf and demagnetization

Application of part of coil electromagnetic vector against magnetic field of the permanent magnet in the rotor, which reduces the effective electrical constant $\mathrm{K}^{\prime}=\mathrm{K}-\mathrm{B}_{\mathrm{D}}$ and b -emf size

Benefits:

- higher achievable speed
- Smooth speed control

Drawbacks:

- Reduced torque
- Need for overvoltage protection

B-emf without demagnetization
B-emf with demagnetization

PMSM principle - coil \& magnetic rotor

Stator

Rotor

(permanent magnet) fixed on applicate axis

Stator coil

Current

 running in the coil causes rotor to move and align
PMSM principle - vector representation

Magnetic fields
 of the rotor and coil can be described by vectors (with their size and direction, or $\mathrm{x}-\mathrm{y}$ coordinates)

Their common point is placed in the rotor axis

PMSM principle - 3 coils -3 phases

Second coil

Current applied to this coil causes rotor to move again

Third coil

Current applied to this coil causes rotor to move yet again

PMSM principle - star configuration

Stator coils are connected in the neutral point, only 3 terminals U, V, W are needed

The final stator electromagnetic vector is a sum of those generated by each coil current
phase U

PMSM and BLDC motors

- Permanent Magnet Synchronous Motor (PMSM)
- Stator consists of three phase windings
- Rotor houses permanent magnets
- on the surface \rightarrow Surface Mounted (SM) PMSM
- Buried within the rotor \rightarrow Internal (I) PMSM

- Stator excitation frequency must be synchronous with rotor electrical speed
- Rotation induces sinusoidal Back Electro-Motive Force (BEMF) in motor phases
- Gives best performances (torque steadiness) when driven by sinusoidal phase current

PMSM and BLDC motors

- Permanent Magnet Brushless DC motors (BLDC)

- Like PMSM - and despite of their name - require alternating stator current
- Like in PMSM, rotor houses permanent magnets,
 usually glued on its surface
- Like PMSM, stator excitation frequency matches rotor electrical speed
- Unlike PMSM, rotor spinning induced trapezoidal shaped Back Electro-Motive Force (B-EMF)
- Gives best performances (torque steadiness) when driven by rectangular-shaped currents

life.augmented

PMSM control principles

- Voltages on phases U, V, W are controlled independently

- 3 currents flow in - or not?

$$
i_{a}+i_{b}+i_{c}=0
$$

is equivalent to

$$
\begin{aligned}
& i_{a}=-i_{b}-i_{c} \\
& i_{b}=-i_{a}-i_{c} \\
& i_{c}=-i_{a}-i_{b}
\end{aligned}
$$

PMSM control principles

- All mentioned methods use Pulse Width Modulation with fixed frequency and variable pulse length to control effective voltage on the phases
- Block commutation
- Historically used
- Simple to implement
- Drawbacks in control: higher torque ripple, slow reaction on load change
- Sinusoidal Field Oriented Control (FOC)
- More complicated and more expensive
- More difficult to implement, requires DSP-like functionality
- Rapid reaction on torque/load change, low torque ripple, full 4-quadrant operation

PMSM FOC principle

- Field Oriented Control: stator currents (Field) are controlled in amplitude and phase (Orientation) with respect to the rotor flux
$>$ current sensing is mandatory (3shunt/1shunt/ICS)
>speed / position sensing is mandatory (encoder/Hall/sensorless alg)
>current controllers needed (PI/D,FF)

Momentum T_{e} is maximized if...

FOC principle - Clarke transformation

transforms

$i_{a}, i_{b}, i_{c}\left(120^{\circ}\right)$
to
$\mathrm{i}_{\alpha}, \mathrm{i}_{\beta}\left(90^{\circ}\right)$
considering
phase U

$$
\mathrm{i}_{\mathrm{a}}+\mathrm{i}_{\mathrm{b}}+\mathrm{i}_{\mathrm{c}}=0
$$

FOC principle - axes spin with the rotor

phase W
 $\mathrm{i}_{\mathrm{c}}=0$

phase V $i_{b}=-i_{a}$
phase U

FOC principle - Park transformation

Park:
transforms rotating i_{α}, i_{β} to steady values i_{q}, i_{d} seen from the rotor view

- Best energy efficiency even during transient operation.
- Responsive speed control to load variations.
- Decoupled control of both electromagnetic torque and flux.
- Acoustical noise reduction due to sinusoidal waveforms.
- Active electrical brake and energy reversal.

PMSM FOC overview:

reference frame transformations

- Clarke: transforms $\mathrm{i}_{a}, \mathrm{i}_{\mathrm{b}}, \mathrm{i}_{c}\left(120^{\circ}\right)$ to $\mathrm{i}_{\alpha}, \mathrm{i}_{\beta}\left(90^{\circ}\right)$

$$
\begin{aligned}
& i_{\alpha}=i_{a s} \\
& i_{\beta}=-\frac{i_{a s}+2 i_{b s}}{\sqrt{3}}
\end{aligned}
$$

- Park: currents $\mathrm{i}_{\alpha}, \mathrm{i}_{\beta}$, transformed on a reference frame rotating with their frequency, become DC currents $\mathrm{i}_{\mathrm{q}}, \mathrm{i}_{\mathrm{d}}\left(90^{\circ}\right)$ - a demodulation

$$
\begin{aligned}
& i_{q s}=i_{\alpha} \cos \theta_{r}-i_{\beta} \sin \theta_{r} \\
& i_{d s}=i_{a} \sin \theta_{r}+i_{\beta} \cos \theta_{r}
\end{aligned}
$$

- PI regulators now work efficiently in a 'DC' domain; their DC outputs, voltage references v_{q}, v_{d} are handled by the Reverse Park into AC domain (v_{α}, v_{β})

$$
\begin{aligned}
& v_{\alpha}=v_{q s} \cos \theta_{r}+v_{d s} \sin \theta_{r} \\
& v_{\beta}=-v_{q s} \sin \theta_{r}+v_{d s} \cos \theta_{r}
\end{aligned}
$$

