
ST Motor Control FOC library API &

STM32CubeMX

Lab 5: Using Motor Control library API’s

Motor Control Development Workflow

Hardware
Setup

Motor
Characterization

System
Configuration

Motor Control
Workbench

Project
Configuration

CubeMX & IDE

Motor Drive
Tuning

Tune MC part

Final Application
Development

#6 – Application development 2

http://www.ac6.fr/

LAB 5 tasks

• SDK5.x Firmware Architecture

• API - Application Programming Interface

• How to build an user project & firmware?

• Start / Stop – motor by API

• Speed control by API

3

SDK5.x Firmware Architecture

SDK5.x FW Architecture Overview

• Motor control firmware is organized into 3 parts:

• User Interface Library

• Motor Control Cockpit

• Motor Control Library

5

Motor Control Cockpit

- MC API -

Motor Control Library

- Lower Level API -

MC Loop Safety Loop FOC LoopInit. / Config .

Revup Gate Control
Encoder

Alignment

On the Fly
Startup

Bus Voltage
Sensing

Current Sensing
& PWM Gen.

Temperature
Sensing

Speed & Position
Feedback

Max. Torque per
Ampere

Feed Forward

Flux Weakening

PID Regulator Ramp ManagerCircle Limitation

Speed & Torque
Control

Power
Measurement

Inrush Current
Limiter

Open Loop FOC

GPIO Driver

Components
Instantiation

Components
Configuration

State Machine

Components
integration

Over Current P.

Under Voltage P.

Over Voltage P.

Over Heating P.

Park / Park
- 1

Clarke / PWM

Components
integration

MC Math

UI Library

- UI API -

API Implementation

Motor 1 Functions Motor 2 Functions
DAC LCD

UART
Communication

MC Protocol

HAL / LL

Application

Motor Control Cockpit - Introduction

• MC Cockpit is made of three parts

Motor Control Cockpit

MC Loop Safety Loop FOC LoopInit. / Config.

Components
Instantiation

Components
Configuration

State Machine

Components
integration

Over Current P.

Under Current P.

Over Voltage P.

Over Heating P.

Park / Park-1

Clarke / PWM

Components
integration

API Implementation

Motor 1 Functions Motor 2 Functions

MC Interface

Implementation of

the MC API

MC Configuration

Instantiation and

configuration of all

needed

component

MC Dynamics

Implementation

the Motor Control

dynamic behavior/loops:

- FOC Loop (High Freq)

- MC Loop (Med Freq)

- Safety Loop (Safety tasks)

6

Application Programming Interface

API

API - Application Programming Interface

What is an API?

• An Application Programming Interface (API)

specifies how software components should interact with each other.

• It provide a consistent, programmatic method for accessing a resource.

• It is a structured way of exposing functionalities.

• Unlike an user interface the API is

a macchine to macchine interface.

It allows developers to access

the functionality of the software

through well-defined data structures.

User code

….

….

….

Motor control

firmware

API

Data

Commands

8

Motor Control (MC) API
• The MC API is the entry point to build user application

• It is split in two sections:

• MC Interface is a set of basic functions that allows to build an user application.

• MC Tuning contains full set of functions that can be used to interact with the motor

control objects.

MC Cockpit
MC Interface MC Tuning MC Dynamics

MC API

StartMotor

StopMotor

ProgramSpeedRamp

…

Functionality Intended use Example functions

MC Interface Basic Basic user code

MC_StartMotor1

MC_StopMotor2

MC_ProgramSpeedRampMotor1

MC Tuning Full
Tuning

Advanced user code
PID_SetKP

9

MC Interface

• MC Interface contains 2 types of commands

• Buffered - don't become active as soon as it is called but it will be executed when the state

machine reach the RUN state.

• Not buffered - is executed instantaneously if the state macchine is in the proper state

otherwise it is discarted.

Behavior Example functions

Buffered

commands

Command is buffered and executed when the

state macchine reach the RUN state.

MC_ProgramSpeedRampMotor1

MC_ProgramTorqueRampMotor2

MC_SetCurrentReferenceMotor1

Not buffered

commands

Command is executed instantaneously if the

state machine is in the proper state otherwise it

is discarded.

MC_StartMotor2

MC_StopMotor1

MC_AcknowledgeFaultMotor1

10

MC Interface functions

• All functions of the MC interface can be called by their self explaining

names without passing the pointer to a data structure.

User code

….

{

….

MC_ProgramSpeedRampMotor1(final speed, ramp duration);

MC_StartMotor1();

…

}

11

MC Tuning functions
• MC tuning commands has to has at least one input parameter

• First input parameter is a pointer to item from MC Tuning list

• The called function will use data linked by this pointer

• The MC Tuning list in “mc_config.h” has to be included

• The MC Tuning list you can find

in the header file “mc_config.h”

or also in the documentation

User code
…

#include "mc_config.h"

{

…

PI_SetKP(PIDSpeedHandle_M1, kpValue);

…

}
PIDSpeedHandle_M1 =

= pointer of MC Tuning list

M1 means motor 1

12

SDK C - variables formats

• Speed variables formats

• Two formats are utilized in the firmware library:

• 0.1Hz, this is the format utilized by speed PID and by the user interface layer.

For example what value we have to use for speed ramp: after 1s run on 600 rpm.

600 rpm [round per minute] ➔ 600 / 60 [round per second] ➔ 10 [rps]

10 [rps] ➔ 10 [Hz]

10 [Hz] * 10 ➔ 100 [0.1Hz →… per ten seconds]

MC_ProgramSpeedRampMotor1(100, 1000); //1000 ms ➔ 1 s

Digit Per PWM (dpp), it expresses the angle variation (s16) in a PWM period.

This format can be directly accumulated for getting the rotor angular position

• Current / Torque units implementation

)(

1.0
10

65536

HzPWM

Hzdpp
F

FF


=

(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ∗ 216 ∗ 𝑅𝑠ℎ𝑢𝑛𝑡 ∗ 𝐺𝑎𝑖𝑛)/ 𝑉𝑑𝑑_𝑚𝑖𝑐𝑟𝑜= 𝑇𝑜𝑟𝑞𝑢𝑒𝐹𝑖𝑛𝑎𝑙

13

How to build an user project &

firmware?

How to write down an user code?

• The best place for customer code

is in the Infinite loop inside main function

• An initialization code of added periphery

have to be placed before Infinite loop

• To the section /* USER CODE BEGIN 2 */

• Or after definition of /* USER CODE BEGIN WHILE */

• Functional code have to be located inside

the Infinite loop

• To the section /* USER CODE BEGIN WHILE */

after the row with while (1)

• Or to the section /* USER CODE BEGIN 3 */

15

User Code Sections

• User Code sections have been placed where they were thought to be useful.

• At the beginning and end of such all user section are

/* USER CODE BEGIN XXX */ and /* USER CODE END XXX */

• Applications developers can place

the code they want in these sections.

• STM32CubeMx guarantees that

this code is kept across regenerations.

16

3s

700 rpm

Start / Stop – motor control by API
The tasks:

Use your project & MC Workbench setting for Nucleo F303RE & IHM16 & GimBal motor

Make sequence code with will do following steps:

• Start the motor with start-up ramp up to 700 rpm during 3 seconds

• Stay on speed 700 rpm 5 second, then stop motor

• Wait 2 second, then start motor with previous start-up ramp, but to the opposite direction!

• Stay on speed 700 rpm 5 second, then stop motor

• Wait 2 second, than repeat all previous points again and again …

8s
18s

20s

10s 13s

-700 rpm

17

ST TRUEStudio hint
18

• If you need show Template Proposals you have to use Ctrl+Space

• Open TrueSTUDIO project WorkShop01 and main.c file.

• Find the Infinite loop inside the main function.

• Type the function for speed ramp and for start motor:
// hFinalSpeed is mechanical rotor speed reference at the end of the speed ramp

// it is expressed in tenths of HZ. (The rpm value has to be divided by 6)

void MC_ProgramSpeedRampMotor1(int16_t hFinalSpeed, uint16_t hDurationms);

bool MC_StartMotor1(void);

• Use HAL function for waiting till 5th second then stop motor:
HAL_Delay(8000); //delay contains the start-up time and 5 second run ➔ 8 000 ms

MC_StopMotor1();

HAL_Delay(2000);

• Write down four similar lines for the reverse direction.
Reverse direction?

➔ Speed is with minus signature

• Time to work (10mins) on the example. Let’s go!

HAL_Delay(?); What number is the best value?HAL_Delay(8000); //delay contains the start-up time and 5 second run ➔ 8000 ms

Start / Stop – motor control by API

3s 8s
10s 13s 18s

20s

700 rpm

-700 rpm

5s

2s

2s

2s

19

Finalized examples

• You had not enough time, you have lost somewhere… 

• Don’t worries! We have prepared for you finalized examples! ☺

• Open Workshop folder ..\Documents\MCWorkshop18Q3\Examples

• Find package file LAB.zip

• Use right button

on mouse

• Select ”Extract here”

Password is …

20

Open

…

Extract here

…

How open finalized examples in ST TrueSTUDIO

• Open Atollic TrueSTUDIO

• Select Workspace

C:\Users\User Name\Documents\MCWorkshop18Q3\HandsOn

• Click on OK

21

• Click on File and Import

• Select General, Existing Projects into

Workspace and Next

22

How open finalized examples in ST TrueSTUDIO

• Select root directory:

C:\Users\User Name\Documents\MCWorkshop18Q3\Examples

• You should see three examples

• Click on Finish

23

How open finalized examples in ST TrueSTUDIO

• After import you should see three Project

• Open LAB Project

• Click on Application, User and main.c

• In the USER CODE BEGIN Includes section are

predefined LAB5_A, LAB5_B and LAB6.

You can select one by (un)comment and test it

24

How use finalized examples in ST TrueSTUDIO

3s 8s
10s 13s 18s

20s

700 rpm

-700 rpm

5s

2s

2s

2s

25

How use finalized examples in ST TrueSTUDIO

• ST TrueSTUDIO – Compile and load your MC application

• Click on the icon “Build” or press the keys “Ctrl+B”

• Click on the icon “Debug” or press the key “F11”

• Close the Debug to start your MC Application

26

LAB5 - Start / Stop – motor control by API – time overview

1. Calling of functions SpeedRamp and

StartMotor

2. Start-up step 1 – alignment → zero speed

3. Start-up ramp – switching from open to close

loop is over speed threshold 350rpm

4. Applied SpeedRamp 700rpm is reached

during 3 seconds

5. Reached 700 and keeping in stable speed

6. Calling StopMotor and wait 2 seconds

1

2

3

4

5

6

1

2

8s 2s

3s

Next task

• You will have time to do next task.

• Close the finalized examples

• Select “LAB”

• Use right button on mouse

• Select ”Close Project”

• Open WorkShop01

• Please follow the instructions.

• Do not worry if you will lose somewhere. 

• You know, you can use prepared finalized examples.

☺ .

27

New

…

Close Project

…

Speed control motor by API
Adapt previous example to swap between two speed values

700 rpm and 1400 rpm depending on temperature

• Read Power Board temperature

• NTC sensor is located next to green motor connector

Use function NTC_GetAvTemp_C

• Compare measured temperature

• If (> 29°C) then spin slower (700 rpm)

• else spin faster (1400 rpm)

28

Speed control motor by API
• Time to work (10mins) on the example.

• Use previous example with ramps

• You have to get the pointer of MC Tuning list.

#include “mc_config.h” //write it before Infinite loop

• Add temperature reading and compare result with 29°C

Use finction NTC_GetAvTemp_C and structure from “mc_config.h”

// write the if condition before rows with the speed ramp Let’s go!

if (NTC_GetAvTemp_C(&TempSensorParamsM1)>29)
{ // If temp is great then use slower speed 700 rpm

MC_ProgramSpeedRampMotor1(700/6, 3000);
}
else // If not then use faster speed 1400 rpm
{ // write down the second case with faster speed

MC_ProgramSpeedRampMotor1(1400/6, 3000);
}

29

Motor Control Development Workflow

Hardware
Setup

Motor
Characterization

System
Configuration

Motor Control
Workbench

Project
Configuration

CubeMX & IDE

Motor Drive
Tuning

Tune MC part

Final Application
Development

#6 – Application development

User code
#include "MC.h"

{

CMCI oMCI = GetMCI(M1);

MCI_ExecSpeedRamp(oMCI, final speed, ramp duration);

MCI_StartMotor(oMCI);

}

30

http://www.ac6.fr/

LAB 6 tasks

Integration of additional IP’s into your Motor Control project

using STM32CubeMX

• Setup additional pins and hardware elements by STM32CubeMX

• Blue USER button

31

New HW setup in STM32CubeMX

1. Use the Blue USER button to start and to stop the motor

a) Find the connection of the blue USER button in the schematic

b) Disable the control of the blue USER button by the MC Library

c) Use the pin, select and set external interrupt function in STM32CubeMX

d) Write down a code for handling the button and control the motor

32

In the schematics

of “NUCLEO-F303RE” board

find the connections of

Blue USER button ➔ PC13

Find the I/O pins connection

Nucleo board

PC13

33

Setting in MC Workbench
34

• Open example project in WB for Nucleo F303RE & IHM16 & GimBal

• In User Interface unselect Start/Stop Button

• Save As “WorkShop02” to the HandsOn folder

Generate project from MC Workbench
35

• Generate project to the HandsOn folder

• There are two buttons

• Generate

• It does not take into account modifications

inside .ioc file

• Simply generate new .ioc from WB project

• Update

• It generate motor control part

• Rest of setting is reused from previous .ioc

• Have to be used after you have made additional

setting by Cube MX

• Open the generated Cube MX project

1.Open the project folder
C:\Users\User Name\Documents\MCWorkshop18Q3\HandsOn

2.Launch “STM32CubeMX” project initiated from MC Workbench using

double click on .ioc file “WorkShop02.ioc”

STM32CubeMX project

1

2

36

1. Select “Pinout” tab

2. Select the PC13 and click

3. Select “GPIO_EXTI13”

4. Use right mouse button

and enter the pin label:

“Start/Stop [PushButton]”

Comment will be skipped for macro definition

The forbidden characters in C will be replaced by “_”

➔ #define Start_Stop_Pin GPIO_PIN_13

#define Start_Stop_GPIO_Port GPIOC

Modify the pinout layout
37

1

3

2

1. Configure GPIO PC13 as EXTI

a) Select the “Configuration” tab

b) Click on the “GPIO” button

c) Select PC13 in the “GPIO” tab

and set the GPIO mode to

“External Interrupt Mode with Falling edge trigger detection”

2. Set interrupt mode in NVIC

a) Click on the “NVIC” button

b) Enable the “EXTI line[15:10] interrupts”

group in the “NVIC” tab and set Priority to 7

2b

Modify the pinout setting of button

• We have to configure the external interrupt input usage of USER button

1a

1b

2a

1c

38

Generate the firmware

• STM32CubeMX – Generate the firmware

• Start STM32CubeMX generation from icon

or use short-keys Ctrl+Shift+G

39

Push Button code

• Write down the code for the Button

• Use function for getting the status of motor 1

MC_GetSTMStateMotor1 and compere it

with the state IDLE

• Code

if(GPIO_Pin == Start_Stop_Pin) {

State_t MState = MC_GetSTMStateMotor1();

if (MState == IDLE) {

MC_ProgramSpeedRampMotor1(700/6,500);

MC_StartMotor1(); }

else

MC_StopMotor1(); }

40

Motor Control Development Workflow

Hardware
Setup

Motor
Characterization

System
Configuration

Motor Control
Workbench

Project
Configuration

CubeMX & IDE

Motor Drive
Tuning

Tune MC part

Final Application
Development

#6 – Application development

User code
#include "MC.h"

{

CMCI oMCI = GetMCI(M1);

MCI_ExecSpeedRamp(oMCI, final speed, ramp duration);

MCI_StartMotor(oMCI);

}

41

http://www.ac6.fr/

