

ST Motor Control FOC library API & STM32CubeMX

STSPIN

STM32

Lab 5: Using Motor Control library API's

LAB 5 tasks

- SDK5.x Firmware Architecture
- API Application Programming Interface
- How to build an user project & firmware?
- Start / Stop motor by API

Speed control by API

SDK5.x Firmware Architecture

• Motor control firmware is organized into 3 parts:

• MC Cockpit is made of three parts

Application Programming Interface

API - Application Programming Interface

What is an API?

- An Application Programming Interface (API) specifies how software components should interact with each other.
- It provide a consistent, programmatic method for accessing a resource.
- It is a structured way of exposing functionalities.
- Unlike an user interface the API is a macchine to macchine interface. It allows developers to access the functionality of the software through well-defined data structures.

Motor Control (MC) API

- The MC API is the entry point to build user application
- It is split in two sections:
 - MC Interface is a set of basic functions that allows to build an user application.
 - MC Tuning contains full set of functions that can be used to interact with the motor control objects.

MC Interface

- MC Interface contains 2 types of commands
 - **Buffered** don't become active as soon as it is called but it will be executed when the state machine reach the RUN state.
 - **Not buffered** is executed instantaneously if the state macchine is in the proper state otherwise it is discarted.

	Behavior	Example functions
Buffered commands	Command is buffered and executed when the state macchine reach the RUN state.	MC_ProgramSpeedRampMotor1 MC_ProgramTorqueRampMotor2 MC_SetCurrentReferenceMotor1
Not buffered commands	Command is executed instantaneously if the state machine is in the proper state otherwise it is discarded.	MC_StartMotor2 MC_StopMotor1 MC_AcknowledgeFaultMotor1

MC Interface functions

• All functions of the MC interface can be called by their self explaining names without passing the pointer to a data structure.

MC Tuning functions

- MC tuning commands has to has at least one input parameter
- First input parameter is a pointer to item from MC Tuning list
- The called function will use data linked by this pointer
- The MC Tuning list in "mc_config.h" has to be included
 - The MC Tuning list you can find in the header file "mc_config.h" or also in the documentation

M1 means motor 1

SDK C - variables formats

- Speed variables formats
 - Two formats are utilized in the firmware library:
 - 0.1Hz, this is the format utilized by speed PID and by the user interface layer. For example what value we have to use for speed ramp: after 1s run on 600 rpm.
 600 rpm [round per minute] → 600 / 60 [round per second] → 10 [rps]
 10 [rps] → 10 [Hz]
 10 [Hz] * 10 → 100 [0.1Hz → ... per ten seconds]
 MC_ProgramSpeedRampMotor1(100, 1000); //1000 ms → 1 s

Digit Per PWM (dpp), it expresses the angle variation (s16) in a PWM period. This format can be directly accumulated for getting the rotor angular position

$$F_{dpp} = F_{0.1Hz} \frac{65536}{10 \cdot F_{PWM(Hz)}}$$

• Current / Torque units implementation (Current $* 2^{16} * R_{shunt} * Gain$) / $V_{dd_micro} = Torque_{Final}$

How to build an user project & firmware?

How to write down an user code?

- The best place for customer code is in the **Infinite loop** inside **main** function
- An **initialization** code of added periphery have to be placed before Infinite loop
 - To the section /* USER CODE BEGIN 2 */
 - Or after definition of /* USER CODE BEGIN WHILE */
- Functional code have to be located inside the Infinite loop
 - To the section /* USER CODE BEGIN WHILE */ after the row with while (1)

• Or to the section /* USER CODE BEGIN 3 */

-			
.c mai	.c main.c ⊠		
117			
118	/* USER CODE END SysInit */		
119			
120	/* Initialize all configured peripherals */		
121	MX_GPIO_Init();		
122	MX_ADC1_Init();		
123	<pre>MX_DAC_Init();</pre>		
124	<pre>MX_TIM1_Init();</pre>		
125	<pre>MX_USART2_UART_Init();</pre>		
126	<pre>MX_MotorControl_Init();</pre>		
127			
128	<pre>/* Initialize interrupts */</pre>		
129	<pre>MX_NVIC_Init():</pre>		
130	/* USER CODE BEGIN 2 */		
131			
132	/* USER CODE END 2 */		
133			
134	/* Infinite loop */		
135	/* USER CODE BEGIN WHILE */		
136	while (1)		
137	_{		
138			
139	/* USER CODE END WHILE */		
140			
141	/* USER CODE BEGIN 3 */		
142			
143			
144	/* USER CODE END 3 */		
145			

User Code Sections

- User Code sections have been placed where they were thought to be useful.
- At the beginning and end of such all user section are /* USER CODE BEGIN XXX */ and /* USER CODE END XXX */
- Applications developers can place the code they want in these sections.
- STM32CubeMx guarantees that this code is kept across regenerations.

Start / Stop – motor control by API

The tasks:

Use your project & MC Workbench setting for Nucleo F303RE & IHM16 & GimBal motor

Make sequence code with will do following steps:

- Start the motor with start-up ramp up to 700 rpm during 3 seconds
- Stay on speed 700 rpm 5 second, then stop motor
- Wait 2 second, then start motor with previous start-up ramp, but to the opposite direction!
- Stay on speed 700 rpm 5 second, then stop motor
- Wait 2 second, than repeat all previous points again and again ...

ST TRUEStudio hint

If you need show Template Proposals you have to use Ctrl+Space

Start / Stop – motor control by API

- Open TrueSTUDIO project WorkShop01 and main.c file.
- Find the Infinite loop inside the main function.
- Type the function for speed ramp and for start motor:

// hFinalSpeed is mechanical rotor speed reference at the end of the speed ramp
// it is expressed in tenths of HZ. (The rpm value has to be divided by 6)

void MC_ProgramSpeedRampMotor1(int16_t hFinalSpeed, uint16_t hDurationms); bool MC_StartMotor1(void);

• Use HAL function for waiting till 5th second then stop motor:

HAL_Delay(8000); MC_StopMotor1(); HAL_Delay(2000);

; //delay contains the start-up time and 5 second run → 8000 ms
 ;

• Write down four similar lines for the reverse direction.

Reverse direction?

life.auamented

➔ Speed is with minus signature

Time to work (10mins) on the example. Let's go!

Finalized examples

- You had not enough time, you have lost somewhere... ☺
- Don't worries! We have prepared for you finalized examples! ③
- Open Workshop folder ...\Documents\MCWorkshop18Q3\Examples
- Find package file LAB.zip
- Use right button on mouse
- Select "Extract here"

Password is ...

- -

X

How open finalized examples in ST TrueSTUDIO

Open Atollic TrueSTUDIO

- Select Workspace
- C:\Users\User Name\Documents\MCWorkshop18Q3\HandsOn
- Click on OK

21

life.auamentec

How open finalized examples in ST TrueSTUDIO

- Click on File and Import
- Select General, Existing Projects into Workspace and Next

Conta non anti-staform on anti-staform file on disertant	
Create new projects from an archive file or directory.	
Select an import wizard:	
type filter text	
a 🗁 General	
Archive File Evisting Projects into Workspace	=
File System	
Preferences	
Projects from Folder or Archive	
	-

• Select root directory:

C:\Users\User Name\Documents\MCWorkshop18Q3\Examples

- You should see three examples
- Click on Finish

a Import		
Import Projects Select a directory to search for existing Eclipse projects.		
 Select roo<u>t</u> directory: Select <u>a</u>rchive file: 	C:\Users\User Name\Documents\MCWorkshop18Q3\Examples	B <u>r</u> owse
Projects: Hardware_test (C LAB (C:\Users\ U LAB3 (C:\Users\ I	:\Users\ User Name \Documents\MCWorkshop18Q3\Examples\01_Ha ser Name \Documents\MCWorkshop18Q3\Examples\03_LAB_5_and_6 User Name \Documents\MCWorkshop18Q3\Examples\02_LAB3\True5	Select All
© Searc <u>h</u> for nested pro <u>C</u> opy projects into w <u>Hi</u> de projects that alr	ojects orkspace eady exist in the workspace	
Working sets Add projec <u>t</u> to work Working sets:	ing sets (Ne <u>w</u> S <u>e</u> lect
?	< <u>B</u> ack Next > Einish	Cancel

How use finalized examples in ST TrueSTUDIO

• After import you should see three Project

🔑 I AB

- Open LAB Project
- Click on Application, User and main.c

a HandsOn - C/C++ - Atollic TrueSTUDIO for STM3
<u>File Edit Source Refactor View Navigate S</u>
C 🖬 📽 🖸 🖾 🗊 🔚 🕼 🔦 🗞 🐔
Project Explorer ☆ ▷ Project Explorer ☆ ▷ ▷ ▷ ▷ ▷ ▷ □ ▷ □ ▷ □ ▷ □ ▷ □ ▷ □ ▷ □ ▷ □ ▷ □ ▷ □ ▷ □ □ □

💼 ma	in.c 🕱
540	/* USER CODE BEGIN Includes */
55	//#define LAB5_A
56	#define LAB5_B
57	//#define LAB6
58	/
59	<pre>#ifdef LAB5_B</pre>
60	<pre>#include "mc_config.h"</pre>
61	#endif
62	/* USER CODE END Includes */
C 2	

How use finalized examples in ST TrueSTUDIO

0-

25

🚺 ma	in.c 🕱	700 rpm 55 25
139	/* Infinite loop */	<u>\ 10s 13s 18s</u>
140	/* USER CODE BEGIN WHILE */	3s 8s / 20s
141	while (1)	-700 rpm 2s / 2s
142	{	
143	#ifdef LAB5 A	
144	MC ProgramSpeedRampMotor1(700/6,3000);	
145	<pre>MC StartMotor1();</pre>	
146	HAL Delay(8000);	
147	MC_StopMotor1();	
148	HAL_Delay(2000);	
149		
150	<pre>MC_ProgramSpeedRampMotor1(-700/6,3000);</pre>	• ST TrueSTUDIO – Compile and load your MC application
151	<pre>MC_StartMotor1();</pre>	of fracerobio comple and lead your me application
152	HAL_Delay(8000);	Build 'Debug' for project
153	<pre>MC_StopMotor1();</pre>	Click on the icon " Build " 🔨 or press the keys "Ctrl+B"
154	HAL_Delay(2000);	Ş
155	#endif	 Click on the icon "Debug"
		Terminate (Ctrl+F2)
augmented		Close the Debug to start your MC Application

life.auamentec

LAB5 - Start / Stop – motor control by API – time overview

- 1. Calling of functions SpeedRamp and StartMotor
- 2. Start-up step 1 alignment \rightarrow zero speed
- 3. Start-up ramp switching from open to close loop is over speed threshold 350rpm
- 4. Applied SpeedRamp 700rpm is reached during 3 seconds
- 5. Reached 700 and keeping in stable speed
- 6. Calling StopMotor and wait 2 seconds

Next task

- You will have time to do next task.
- Close the finalized examples
 - Select "LAB"
 - Use right button on mouse
 - Select "Close Project"
 - Open WorkShop01
- Please follow the instructions.
- Do not worry if you will lose somewhere. 🛞
- You know, you can use prepared finalized examples.

 (\cdot)

Speed control motor by API

Adapt previous example to swap between two speed values 700 rpm and 1400 rpm depending on temperature

- Read Power Board temperature
 - NTC sensor is located next to green motor connector
 Use function NTC_GetAvTemp_C

- Compare measured temperature
 - If (> 29°C) then spin slower (700 rpm)
 - else spin faster (1400 rpm)

Speed control motor by API

.c

1

- Time to work (10mins) on the example.
- Use previous example with ramps
- You have to get the pointer of MC Tuning list.
 - #include "mc_config.h" //write it before Infinite loop
- Add temperature reading and compare result with 29°C

Use finction NTC_GetAvTemp_C and structure from "mc_config.h"

// write the if condition before rows with the speed ramp

else // If not then use faster speed 1400 rpm { // write down the second case with faster speed MC_ProgramSpeedRampMotor1(1400/6, 3000);

mai	n.c 🛛	
39	/*	Infinite loop */
40	/*	USER CODE BEGIN WHILE */
41	whi	le (1)
42	{	
43	#ifde	f LAB5 B
44		-
45		<pre>if (NTC_GetAvTemp_C(&TempSensorParamsM1)>29)</pre>
46		{
47		<pre>MC_ProgramSpeedRampMotor1(700/6,3000);</pre>
48		}
49		else
50		{
51		<pre>MC_ProgramSpeedRampMotor1(1400/6,3000);</pre>
52		}
53		<pre>MC_StartMotor1();</pre>
54		HAL_Delay(8000);
55		<pre>MC_StopMotor1();</pre>
56		HAL_Delay(2000);
57		<pre>if (NTC_GetAvTemp_C(&TempSensorParamsM1)>29)</pre>
58		{
59		<pre>MC_ProgramSpeedRampMotor1(-700/6,3000);</pre>
c 0.		

Integration of additional IP's into your Motor Control project using STM32CubeMX

Setup additional pins and hardware elements by STM32CubeMX

Blue USER button

New HW setup in STM32CubeMX

- 1. Use the Blue **USER button** to **start** and to **stop** the motor
 - a) Find the connection of the blue USER button in the schematic
 - b) Disable the control of the blue USER button by the MC Library

- c) Use the pin, select and set external interrupt function in STM32CubeMX
- d) Write down a code for handling the button and control the motor

Find the I/O pins connection

In the schematics of "NUCLEO-F303RE" board find the connections of

Blue USER button → PC13

Setting in MC Workbench

- Open example project in WB for Nucleo F303RE & IHM16 & GimBal
- In User Interface unselect Start/Stop Button
- Save As "WorkShop02" to the HandsOn folder

Generate project from MC Workbench

• Generate project to the HandsOn folder

• There are two buttons

• Generate

- It does not take into account modifications inside .ioc file
- Simply generate new .ioc from WB project

• Update

- It generate motor control part
- Rest of setting is reused from previous .ioc
- Have to be used after you have made additional setting by Cube MX

Project generation	
Settings Generation	
STM32CubeMx	
4.25.1	
Target Toolchain ST TrueSTUDIO HAL/LL Drivers Selection HAL - Hardware Abstraction Layer	· · · · · · · · · · · · · · · · · · ·
	Generate

STM32CubeMX project

Open the generated Cube MX project

36

- 1. Open the project folder C:\Users\User Name\Documents\MCWorkshop18Q3\HandsOn
- 2. Launch "STM32CubeMX" project initiated from MC Workbench using double click on .ioc file "WorkShop02.ioc"

life.augmented

Modify the pinout layout

- 1. Select "Pinout" tab
- 2. Select the PC13 and click
- 3. Select "GPIO_EXTI13"
- 4. Use right mouse button and enter the pin label: "Start/Stop [PushButton]"

Comment will be skipped for macro definition

The forbidden characters in C will be replaced by "_"

#define Start_Stop_Pin GPIO_PIN_13
 #define Start_Stop_GPIO_Port GPIOC

life.auamented

Modify the pinout setting of button

- We have to configure the external interrupt input usage of USER button
 - 1. Configure GPIO PC13 as EXTI
 - a) Select the "Configuration" tab
 - b) Click on the "GPIO" button
 - c) Select PC13 in the "GPIO" tab and set the GPIO mode to
 "External Interrupt Mode with Falling edge trigger detection"

- 2. Set interrupt mode in NVIC
 - a) Click on the "NVIC" button
 - b) Enable the "EXTI line[15:10] interrupts" group in the "NVIC" tab and set Priority to 7

Pinout Clock Configuration Configuration

System

DMA C

Generate the firmware

• STM32CubeMX – Generate the firmware

 Start STM32CubeMX generation from icon or use short-keys Ctrl+Shift+G

Generating user source code		

Push Button code

• Write down the code for the Button

 Use function for getting the status of motor 1
 MC_GetSTMStateMotor1 and compere it with the state IDLE

• Code

```
if(GPIO_Pin == Start_Stop_Pin) {
  State_t MState = MC_GetSTMStateMotor1();
  if (MState == IDLE) {
    MC_ProgramSpeedRampMotor1(700/6,500);
    MC_StartMotor1(); }
```

}

else

MC_StopMotor1();

.c mai	n.c 🛛
599	/* USER CODE BEGIN 4 */
6000	<pre>void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin){</pre>
601	#ifdef LAB6
602	<pre>if(GPI0_Pin == Start_Stop_Pin)</pre>
603	{
604	<pre>State_t MState = MC_GetSTMStateMotor1();</pre>
605	<pre>if (MState == IDLE)</pre>
606	{
607	<pre>MC_ProgramSpeedRampMotor1(700/6,500);</pre>
608	<pre>MC_StartMotor1();</pre>
609	}
610	else
611	<pre>MC_StopMotor1();</pre>
612	}
613	#endif
614	}
615	/* USER CODE END 4 */

